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ABSTRACT 

Computational results have been obtained for the plane albedo, total transmission and fractional absorption 
of plane-parallel atmospheres composed of cloud droplets. These computations, which were obtained using the 
doubling method, are compared with comparable results obtained using selected radiative transfer approximations. 
Both the relative and absolute accuracies of asymptotic theory for thick layers and delta-Eddington, Meador- 
Weaver and Coakley-Ch?lek approximations are compared as a function of optical thickness, solar zenith angle 
and single scattering albedo. Asymptotic theory is found to be accurate to within 5% for all optical thicknesses 
greater than about 6. On the other hand, the Coakley-Chklek approximation is accurate to within 5% for thin 
atmospheres having optical thicknesses less than about 0.2 for most values of the solar zenith angle. Though 
the accuracies of delta-Eddington and Meador-Weaver approximations are less easily summarized, it can generally 
be concluded that the delta-Eddington approximation is the most accurate for conservative scattering when the 
solar zenith angle is small, while the Meador-Weaver approximation is the most accurate for nonconservative 
scattering (w,, c 0.9). Selected results from the Eddington approximation are presented to illustrate the effect 
of delta function scaling in the delta-Eddington approximation. In addition, selected results from the single 
scattering approximation and asymptotic theory are presented in order to help explain the strengths and limitations 
of the various approximations. 

1. Introduction 

In recent years much attention has been devoted to 
the development of simple and computationally fast 
analytical approximations to the radiative transfer 
equation. This has largely been the result of the need 
to parameterize the radiative properties of clouds and 
aerosols in general circulation climate models (e. g., 
see Stephens, 1984). In these and other climate model 
applications, it becomes necessary to rapidly calculate 
the plane albedo, total transmission and fractional ab- 
sorption as a function of optical thickness and solar 
zenith angle for a wide range of atmospheric conditions. 

Among the simplest and most widely used approx- 
imations to the radiative transfer equation are the two- 
stream and Eddington approximations. These approx- 
imations have been discussed and analyzed by Irvine 
(1968), Kawata and Irvine (1970), Shettle and Wein- 
man (1970), Liou (1973, 1974), Coakley and Ch$lek 
(1975), Joseph et al. (1976) and Schaller (1979). Re- 
cently, Meador and Weaver (1980) and Zdunkowski 
et al. (1980) have shown that a whole class of approx- 
imate two-stream solutions can be reduced to a stan- 
dard form with only a few coefficients. These coeffi- 
cients depend on the solar zenith angle, single scattering 
albedo and one or more moments of the single scat- 
tering phase function, while the general equations for 
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the plane albedo and total transmission depend in ad- 
dition on the total optical thickness of the layer. In 
spite of this long history of development, no generally 
agreed-upon variable ranges exist within which one can 
use a given approximation with assurance that accurate 
reflected, transmitted and absorbed flux densities will 
be obtained. 

In comparing results obtained from approximate 
methods with numerical computations obtained from 
more exact numerical solutions, it is common practice 
to present either the plane albedo or total transmission 
as a function of the cosine of the solar zenith angle (ho) 
for selected values of the total optical depth (TV). On 
some occasions the plane albedo or total transmission 
are simply tabulated for fixed values of p. and T<. 

Although climate modeling provides a very real mo- 
tivation for developing accurate approximations for the 
reflected and transmitted flux densities over a wide 
range of atmospheric conditions, remote sensing ap- 
plications also utilize radiative transfer approximations 
to interpret experimental results. The delta-Eddington 
approximation (Joseph et al., 1976), for example, has 
been used to interpret transmitted solar radiation mea- 
surements in the nonconservative terrestrial atmo- 
sphere (Carlson and Caverly, 1977) and reflected solar 
radiation measurements in the nonconservative mar- 
tian atmosphere (Paige and Ingersoll, 1985), both under 
the condition that TV < 1. 

Once a layer is sufficiently thick, a diffusion regime 
is established within the layer which permits the ex- 
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tension of the plane albedo, total transmission and 
fractional absorption to comparable values for a semi- 
infinite layer (van de Hulst, 1968a, 1980; Sobolev, 
1975). In the present study, this asymptotic method 
for thick layers is compared in accuracy with the single 
scattering approximation and selected two-stream ap- 
proximations for 0 < p. < 1 and 0.1 < 7t < 100. Results 
have been obtained for four values of the single scat- 
tering albedo (viz., 1.0, 0.99, 0.9 and 0.8) and for a 
cloud phase function having an asymmetry factor g 
= 0.843. Following the suggestion of Wiscombe and 
Joseph (1977) who considered the accuracy of the Ed- 
dington approximation for g < 0.5, both absolute and 
relative errors in the plane albedo, total transmission 
and fractional absorption are presented. We concen- 
trate our comparisons on asymptotic theory for thick 
layers and the delta-Eddington, Meador-Weaver 
(Meador and Weaver, 1980) and Coakley-Chylek (I) 
(Coakley and Chjlek, 197.5, model 1) approximations 
for w. = 1 .O and 0.9. Comprehensive results for all four 
single scattering albedos and for eight different ap- 
proximations may be found in Ring and Harshvardhan 
(1986). 

2. Multiple scattering computations 

To provide a baseline for assessing the accuracy of 
various radiative transfer approximations, numerical 
computations were performed for a model atmosphere 
composed of cloud droplets. Figure 1 illustrates the 
phase function employed in these calculations, which 
is based on Mie theory for a wavelength X = 0.754 
pm, refractive index m = 1.332, and a size distribu- 
tion of particles of a given radius proportional to 
r6 exp(- 1.6 187r), where r is the particle radius in pm. 
This distribution of particles is a gamma distribution 
with an effective radius of 5.56 pm and an effective 
variance of 0.11 1, and is considered typical of fair 
weather cumulus (FWC) clouds (Hansen, 197 1). This 
distribution is similar to Deirmendjian’s ( 1963) cloud 
Cl model, except that the effective radius in Deir- 
mendjian’s model is 6.0 pm. The radius range used in 
our phase function computations was 0.0 1 to 12.5 pm. 

In performing our multiple scattering calculations, 
we have followed the common practice of expressing 
the product of the single scattering albedo w. and phase 
function +(cosO) as a finite expansion of Legendre 
polynomials of the form 

L 

w&(c0s@) = 2 W[P~(COSO), (1) 

I=0 

where 0 is the scattering angle and Pl(cosO) a Legendre 
polynomial of order 1. With this definition, the phase 
function obeys the normalization condition 

; ~(c0s@)d(c0s@) = 1, (2) 
I 
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FIG. I. Phase function as a function of scattering angle for 
a fair weather cumulus (FWC) size distribution given by n(r) 
cc r6 ex&1,6187r), where X = 0.754 ym and m = 1.332 - O.Oi. 

with the asymmetry factor g related to the Legendre 
coefficient w, by 

f I, ~(COSO) c0s@d(c0s@) = g = w,/(3wo). 
s 

(3) 

The L = 230 significant coefficients of the Legendre 
polynomial expansion of the phase function were eval- 
uated using the orthogonality properties of the Le- 
gendre polynomials, together with Gaussian quadrature 
(see King, 1983, for further details, as well as for an 
illustration of wI as a function of 1 for a phase function 
similar to the one illustrated in Fig. 1). The asymmetry 
factor for this cloud model is g = 0.843. 

Having determined the Legendre coefficients wI, 
multiple scattering calculations were performed for the 
azimuth-independent term of the reflection and trans- 
mission functions using the doubling method described 
by Hansen and Travis (1974) together with the in- 
variant imbedding initialization described by Ring 
(1983). In terms of these functions, the azimuthally 
averaged reflected 1’(0, -p) and transmitted ~O(T,, P) 
intensities from a horizontally homogeneous atmo- 
sphere illuminated from above by a parallel beam of 
radiation of incident flux density F. may be expressed 
as 

1°(07 -P) = boFo/4R0(7,; P, PO), (4) 
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1O(T,, FL) = (Po~ol~r?~,; /4 PO)> (5) 

where 7t is the total optical thickness of the atmosphere, 
y. the cosine of the solar zenith angle and P the cosine 
of the zenith angle with respect to the positive 7 direc- 
tion, By convention, the cosine of the zenith angle 
which appears in the definition of the reflection and 
transmission functions is defined with respect to the 
outward-directed normal (0 < CL, cl0 < 1). 

In terms of the azimuth-independent reflection 
function R’(T,; P, pO) and transmission function p”o(~~; 
P, po), the plane albedo, total transmission and frac- 
tional absorption of the layer are given by 

s 

1 

e7t, PO) = 2 R0(7,; P, POWP, (6) 
0 

Due to the use of a highly anisotropic phase function 
and the requirement that accurate computations of the 
plane albedo, total transmission and fractional absorp- 
tion be obtained, we have subdivided the ~1 angular 
interval using a Gaussian quadrature of order 80 (King, 
1983). 

Since the major purpose of this study is to examine 
the accuracy of various radiative transfer approxima- 
tions over a wide range of optical depths, solar zenith 
angles and single scattering albedos, we have ignored 
the effects of surface reflection. As a result, the reflection 
and transmission functions appearing in (4)-(7) apply 
to those of an isolated cloud layer only. 

Figure 2 illustrates ~(r,, go) = 1 - t(~~, po) as a func- 
tion of TV and y. for conservative scattering (w. = 1). 
Figure 3 illustrates doubling computations ofthe plane 
albedo [r(~[, po)], total transmission [t(~~, po)] and frac- 
tional absorption [a(~,, po)] for nonconservative scat- 
tering (w. = 0.9) where we have used the same phase 
function as illustrated in Fig. 1 but simply scaled the 
Legendre coefficients by wo. The doubling computa- 
tions used to generate these results were obtained at 
twelve optical depths 0.0625, 0.125, . . . , 128 and 8 1 
values of the cosine of the solar zenith angle. These p. 
values include 80 Gaussian quadrature points in ad- 
dition to the special case p. = 1. From these results we 
employed a spline under tension interpolation [see 
Cline (1974) for details] to generate a 300 X 300 matrix 
of r(Tr, h), t(~~, h) and a(~~, ~10) values that were equally 
spaced in FLO (0 < p. < 1) and log7, (0.1 < TV < 100). 
These results, presented in Figs. 2 and 3, represent the 
exact results to which the radiative transfer approxi- 
mations are compared in Section 4. 

3. Radiative transfer approximations 

There are generally three classes of radiative transfer 
approximations which have been used the most fre- 

PO 

FIG. 2. Computations of the plane albedo as a function of optical 
thickness and cosine of the solar zenith angle for a FWC phase func- 
tion with conservative scattering (wO = I .O). 

quently to approximate the plane albedo, total trans- 
mission and fractional absorption of a layer. These ap- 
proximations, which include two-stream approxima- 
tions, asymptotic theory for thick layers and single 
scattering, differ considerably in both their assumptions 
and accuracies as a function of 7t and h. In the fol- 
lowing sections we will outline the assumptions and 
formulae applicable to each of these methods, as well 
as explain some of the reasons behind the success and 
failure of these methods in regimes outside their limits 
of applicability. 

a. Asymptotic theory 

When the optical thickness is sufficiently large, a 
diffusion regime is established within the layer. Making 
use of the principles of invariance, together with the 
requirement that a diffusion domain be established at 
an optical depth T( within a semi-infinite layer, it is 
straightforward to show that the reflection and trans- 
mission functions of a layer of optical thickness 7t can 
be expressed in terms of functions applicable to a semi- 
infinite layer (van de Hulst, 1968a, 1980; Sobolev, 
1975). This method, known as asymptotic theory, is a 
rigorous solution to the equation of transfer in optically 
thick layers, and as such, makes no assumption about 
the angular distribution of the intensity field within the 
medium. From these expressions for the reflection and 
transmission functions, coupled with the definitions of 
plane albedo and total transmission given previously, 
it can be shown that the asymptotic theory approxi- 
mations for the plane albedo [i(~~, h)], total trans- 
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FIG. 3. Computations of the (a) plane albedo, (b) total transmission 
and (c) fractional absorption as a function of optical thickness and 
cosine of the solar zenith angle for a FWC phase function with non- 
conservative scattering (wO = 0.9). 

mission [i(~~, PO)], and fractional absorption [L~(T~, po)] the diffusion exponent describing the attenuation of 
are given by radiation in the diffusion domain, 

mnl 
3~~~ PO) = ~&LO) - l _ 12e-2krr KbOWzk”, (9) (12) 

i(q, &)) = mn 
, _ /2e-2krl OOk-krl, (10) and m and 1 constants which depend primarily on the 

single scattering albedo and asymmetry factor (King, 

a^(T,, PO) = 1 - F(71, PO) - k? PO). (11) 198 1). Note that in the derivation of the reflection and 
transmission functions in asymptotic theory, the role 

In these expressions T&.L~) is the plane albedo of a of direct radiation is neglected in comparison with the 
semi-infinite atmosphere, K(P,) the escape function, k role of diffuse radiation. As a consequence, ( 10) could 
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be considered to be either the diffuse or total trans- 
mission for collimated radiation, with (11) adjusted 
accordingly. In examining both of these assumptions, 
it turns out that (10) is a more accurate representation 
of the total transmission than the diffuse transmission. 

The escape function and diffusion exponent, as well 
as other asymptotic functions and constants appearing 
in (9) and (lo), can be obtained by applying the 
asymptotic fitting method of van de Hulst (1968b). In 
this method, computational results from the doubling 
method are fit to asymptotic expressions for the plane 
albedo, diffuse transmission and internal intensity field 
as a function of optical depth. Figure 4 illustrates the 
escape function K(po) as a function of h for four values 
of w. and for the FWC phase function illustrated in 
Fig. 1. It is evident from this figure that the total trans- 
mission at the base of an optically thick atmosphere is 
between 4.35 (w. = 1) and 13.67 (o. = 0.8) times greater 
for overhead sun (pO = 1) than for grazing incidence 
(p. = 0). For a given value of oo, the escape function 
is primarily a function of the asymmetry factor, show- 
ing little sensitivity to the higher order moments of the 
phase function (King, 1983). 

In addition to the escape function, the plane albedo 
and total transmission of thick layers depend on the 
constants m, n, I and k [cf. Eqs. (9) and (lo)]. Each of 
these constants is strongly o. dependent with a some- 
what weaker dependence on g. Though one might ex- 
pect each constant to depend on all expansion coeth- 
cients of the phase function, it turns out that the higher 
order expansion coefficients are quite insignificant. 

FIG. 4. Escape function as a function of cosine of the solar zenith 
angle for a FWC phase function and for four values of the single 
scattering albedo. 
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- %)A 1 - ~o,)l”*. where k is the diffusion exponent. The symbols 
represent values obtained by numerical computation for FWC and 
Henyey-Greenstein phase functions, and the curve the result of a 
least-squares fit to an analytic equation. 

King (198 1) examined this question of similarity and 
found that m, n and 1 can be well described by a func- 
tion of a similarity parameter s, defined by 

1 - wg ( 1 
112 

s = 1 - wag ’ 
(13) 

where s reduces to (I - oo)‘j2 for isotropic scattering 
and spans the range 0 (o. = 1) to 1 (w. = 0). 

Although the diffusion exponent k does not obey 
such a similarity relationship, the function k/( 1 - oog) 
does. Figure 5 illustrates k/( 1 - wag) as a function of 
s for both the FWC (w. = 0.99,0.9 and 0.8) and Hen- 
yey-Greenstein phase functions for varying values of 
w. (0.9999, 0.999, 0.996, 0.99, 0.96, 0.9, 0.8 and 0.6) 
and g (0.8, 0.85 and 0.9). The Henyey-Greenstein 
phase function, first introduced by Henyey and Green- 
stein ( 194 I ), is given by 

cp(c0&) = 
1 -gz 

(1 + g2 - 2g cosO)3’2 . 
(14) 

This phase function is often utilized in radiative transfer 
applications because of the simple expression which 
results for the Legendre coefficients of the phase func- 
tion, viz., w/ = (21+ l)g’wo. 

The computational results presented in Fig. 5 were 
fit to an empirical formula in order to give a satisfactory 
fit to k/( 1 - wag) as a function of s. The fit thus obtained 
is presented as a smooth curve in Fig. 5. It has the 
desirable characteristics that k = 0( 1) at w. = l(O), and 

k/( 1 - wag) = tis + O(s2), (15) 
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where O(s*) denotes terms of the order s* or higher. 
The formulas for m, n. I and k/( 1 - wag) are sum- 
marized in Table 1. The formula for m is identical to 
that obtained by King (198 I), whereas the coefficients 
in the formulas for n and I differ slightly in order to 
give a better fit for small values of s. 

For conservative scattering, when T,(& = n = I = 1 
and m = k = 0, the asymptotic expressions for the 
plane albedo and total transmission given in (9) and 
(10) are indeterminate. Expanding n, I, m and k to first 
order in s, it can be shown that (9) and (10) can be 
rewritten as (King, 198 1) 

37,, PO) = 1 - 
4K(~o) 

3(1 - K)(Tt + Go) ’ 
(16) 

b,> PO) = 
OK 

3(1 - d(7, + 2qo) ’ 

where q. is the extrapolation length. The reduced ex- 
trapolation length q’ = (1 - g)qo is known to range 
between 0.709 and 0.7 15 for all possible phase func- 
tions (van de Hulst, 1980) and can be well approxi- 
mated by 0.7 14 for anisotropic cloud phase functions 
(King, 198 1). Thus it is seen that the plane albedo and 
total transmission in optically thick, conservatively 
scattering layers are a function of (1 - g)Tr, with all of 
the solar zenith angle dependence contained in K(p,). 

h. Tswstream approximations 

The two-stream approximations in radiative transfer 
are based on assuming various analytic forms for the 
upward and downward intensity fields within and at 
the boundaries ofa plane-parallel medium. Substituting 
the assumed angular distribution into the integro-dif- 
ferential form of the equation of transfer results in a 
set of differential equations for the upward and down- 
ward diffuse flux densities F*(r, po) (Meador and 
Weaver, 1980; Zdunkowski et al., 1980): 

= YIF-(T, PO) - ~2F+(7,fio) - Fo~o~@“‘, (18) 

TABLE I. Similarity relations satisfied by the constants which arise 
in asymptotic expressions for the plane albedo, total transmission 
and fractional absorption of thick layers. 

t = (1 - 0.68ls)(l - s) 

(1 + 0.792s) 

(1 + 0.414s)(l - s) I0 
n= 

(1 + 1.888s) I 

M = (1 + 1.537s) In 
1 + 1.800s - 7.087s2 + 4.74os3 

(1 - 0.819s)(l -s)’ 1 
(0.985 - 0.253~)~~ 

k/c' - *g) = 6 - (6,464 - 5 4(j4s, 

dF+(T, PO) 
dr 

= y2 F-CT, po) - Y I F+(T, go) + Fmy4e-‘im, ( 19) 

where 

F&(7, po) = 27r 
S’ 

I”(7, +~)w’~. (20) 
0 

Due to our choice of positive (negative) p for downward 
(upward) directed radiation, F-(7. pug) represents the 
upward flux density and Ff(7, po) the downward diffuse 
flux density at optical depth 7. Note that this is opposite 
the choice of Meador and Weaver ( 1980). 

In order to obtain the forms given in (I 8) and (19) 
it is often necessary to approximate the scattering phase 
function in order to integrate the source function an- 
alytically. Expressions for the plane albedo, total trans- 
mission and fractional absorption are obtained by 
solving (18) and (19) subject to the boundary condi- 
tions Fm(7tr ,uO) = Ft(O, pcLD) = 0. The results may be 
obtained in the form (Meador and Weaver. 1980) 
1 
d7” “) = (1 - k*po*)[(k + ,$h + (k - Y,)e-h] 

x I(1 - bo)(w + We krr - (1 + kpo)(cy2 - ky3)e& 

- 2k(y3 - cz2po)eCf’P~], (21) 

= e-d*0 
{ 

1 _ 
(1 - k2poZ)[(k + y~~kir + (k - -y,)e-““1 

x t( 1 + &,)(~I + k-/de kii - (1 - kp,)(cu, - k-yq)epkTt 

where 

- W-r4 + wok +I] , 
I 

(22) 

QI = YtY4 + Y2Y3> (23) 

cy2 = 7173 + 7274, (24) 

k = (Y,~ - y22)1’2, (25) 

Y4= 1 -y3, (26) 

and the fractional absorption ci(~,, po) is given by (1 1). 
The y,, y2 and y3 coefficients in (19) and (20) for 

various two-stream approximations, along with refer- 
ences to their original description in the literature, are 
given in Table 2. Several of these methods employ delta 
scaling (Joseph et al., 1976) in which a fractionfof the 
scattered energy is considered to be in the forward peak, 
approximated as a Dirac-delta function. For each of 
these methods, which include the delta-Eddington, 
Practical Improved Flux Method (PIFM) and delta- 
discrete ordinates methods, (21) and (22) can still be 
used as long as the following transformations are made 
in the coefficients and solutions: 

7, - 7; = (1 - O&T,, (27) 

ql - 4 = (1 - f)wol( 1 - wof), (2% 
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g-g’= (g-l-)/(1 -f). (29) 

The primed quantities in (27)-(29) when substituted 
into the expressions for yl , y2 and y3 (cf. Table 2) as 
well as into (21) and (22) yield the relevant expressions 
for ?( TV, yo), 2( 7!, po) and a^( T!, pi,) for the delta-scaled 
approximations. Though various choices offare pos- 
sible, the most frequently used choice, and the one 
used in all computational results to be presented below, 
isf= g2. 

When 71/~o 6 1, it can be shown that (21) and (22) 
reduce to 

i(7,, po) = F y3 = 1 - i(7(, po) - ; (1 - oo), (30) 

whereas the equation of transfer reduces to 

(31) 

In this expression P(po) is the backscatter fraction de- 
fined by 

P(Po) = rl;; s,’ hot-~, po)LzcL, (32) 

where h’(-~, po) is the azimuth-independent redistri- 
bution function, defined as the azimuthal average of 
oo~(cosO) for incident solar radiation in the direction 
p. and reflected radiation in the direction -P [see King 
(1983) for an illustration of h’(-p, h) for a phase func- 
tion nearly identical to the one in Fig. 11. 

Using the addition theorem for spherical harmonics, 
Wiscombe and Grams (1976) have shown that (32) 
can be rewritten as 

P(Po) = ; - & 
L/2 

w. [Z (-I)‘$+, ;; ~2/+1~21+,(Po). 

(33) 

Figure 6 illustrates P(Po) as a function of p. for the 
FWC phase function used in the present investigation. 
In order for (30) and (3 1) to be equivalent, it is nec- 
essary for y3 = p(po), which forms the basis for this 
choice of y3 in many of the two-stream .methods (cf. 
Table 2). It is generally believed that (3 1) is the plane 
albedo in the limit of single scattering for thin atmo- 
spheres, and that approximations that reduce to (3 1) 
are accurate in this limit (Coakley and Chylek, 1975). 
Since (31) is valid only when 7(/p. 6 1, however, its 
validity is strongly ~0 dependent, failing especially in 
the limit p. - 0. 

If TV < 1 but y. = 0, Eq. (2 1) has a different limiting 
solution. In this situation it can be shown that ?(7,, h) 

= wo/2 for all methods listed in Table 2 except Coakley 
and Chylek’s model 1, for which we find 

?(7t@ l,p,=O)= 
WO 

2(1 - wo)“2 + 2 - wg 
. (34) 

Since the correct solution for grazing incidence in the 
limit of single scattering is oo/2 (see below), nearly all 
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FIG. 6. Backscattering fraction p(h) as a function of 
cosine of the solar zenith angle. 

methods tend to the correct limiting plane albedo for 
p. = 0 if T! 4 1. Apart from the vicinity of M = 0. 
however, (30) governs the behavior of the approxi- 
mations for thin atmospheres. 

Since it is evident that y3 > 0 for physically realistic 
solutions in the thin atmosphere limit [cf. Eq. (30)]. it 
is expected that the Eddington and discrete ordinates 
methods will fail this test for a range of p. when the 
scattering phase function is highly forward-peaked. This 
failure of the Eddington method is not surprising, since 
it was developed for isotropic scattering in optically 
thick, conservatively scattering atmospheres. Delta 
scaling of the phase function reduces the effective 
asymmetry factor so that y3 > 0 for all situations, but 
the condition y3 = ,&,) is met for only a few methods 
listed in Table 2. 

The Coakley and Chylek ( 1975) model 2, which we 
will hereafter refer to as Coakley-Chjilek (II), uses the 
average backscatter fraction pin the expressions for y, 
and y2. This constant is defined as 

(35) 

and given in terms of the coefficients of the Legendre 
polynomial expansion of the phase function by (Wis- 
combe and Grams, 1976) 

(36) 

For the phase function used in the present investigation, 
/3 = 0.1772. 

For conservative scattering, for which yi = y2 and 
k = 0, Eqs. (21) and (22) reduce to 

= & [YlTl + t-Y3 - YI/.4&1 - f+w)I. 

(37) 

For Coakley and Chjilek’s model 1, hereafter referred 
to as Coakley-Chjlek (I), y3 = yIpo and thus (37) re- 
duces to an especially simple form (see Table 2). 

The asymptotic behavior of two-stream approxi- 
mations for semi-infinite atmospheres may be studied 
using the limiting result for the plane albedo as T, - 
x, derived from (2 1) and given by (Meador and 
Weaver, 1980) 

~23(110) = 
wo(~2 + krs) 

(1 + kcLo)(k + r,) ' 
(38) 

The plane albedo of a semi-infinite atmosphere is il- 
lustrated in Fig. 7 as a function of p. for the FWC 
phase function and three values of the single scattering 
albedo. This figure shows the asymptotic behavior of 
the delta-Eddington (Joseph et al., 1976) and Meador- 
Weaver (Meador and Weaver, 1980) approximations 
[J,(h)], as well as the correct asymptotic limit obtained 
by applying the asymptotic fitting method of van de 
Hulst (1968b) to doubling computations [Y,(P~)]. In 
applying either (37) or (38) to any of the delta-scaled 
approximations, such as the delta-Eddington approx- 
imation, it is of course necessary to make the substi- 
tutions given by (27)-(29). 
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FIG. 7. Plane albedo of a semi-infinite atmosphere r,,,(~) asa func- 
tion of cosine of the solar zenith angle for three values of the single 
scattering albedo. Accurate radiative transfer results are compared 
with results from the delta-Eddington and Meador-Weaver approx- 
imations. 
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Figure 7 clearly shows that the Meador-Weaver ap- 
proximation is able to better simulate the sharp increase 
in plane albedo for small values of p. than is the delta- 
Eddington approximation, especially when w. = 0.8. 
The delta-Eddington approximation, on the other 
hand, is more nearly similar to the true asymptotic 
solution for the important range 0.3 < p. < 1.0, but 
becomes progressively worse as o. decreases from unity. 
Since the denominator in (38) is positive for all two- 
stream methods, the necessary condition for positive 
plane albedos to be obtained in the semi-infinite limit 
is that 

a2 + kys > 0. (39) 

This condition is failed by some models and for certain 
combinations of parameters. 

In order for a two-stream method to perform well 
for optically thick atmospheres, it is necessary for kTt 
(or kr; for delta-scaled approximations) to be equal to 
the product of the diffusion exponent and the total 
optical thickness of the layer, where the diffusion ex- 
ponent is illustrated in Fig. 5 and parameterized in 
Table 1. In both Eddington and delta-Edding- 
ton methods, for example, this is equivalent to the 
statement that the diffusion exponent is given by 

]3(1 - WON1 - @Jog)1 ‘12, which is identical to (15) if one 
neglects terms of order s* or higher. As a consequence, 
the diffusion exponent is obtained accurately when 
s = 0 (w. = I), but is overestimated by e for s = 1 

(wo = 0). Furthermore, the Eddington and delta- 
Eddington methods assume that the angular distribu- 
tion of the intensity field within the layer is linear in 
P. This assumption is rigorous only in the diffusion 
domain of an optically thick, conservatively scattering 
layer (King, 1981). This helps to explain the greater 
success of the Eddington and delta-Eddington methods 
for conservative scattering in thick atmospheres (see 
below). 

Since k exceeds unity for strongly absorbing atmo- 
spheres in all two-stream approximations (cf. Table 2) 
conditions can easily exist for which h = k-l, especially 
in the water vapor bands. Though this condition can 
lead to a numerical singularity in (21) and (22), the 
singularity is removable, and when p. = k-’ it is rather 
straightforward to show that (21) and (22) reduce to 

37,, PO) = 
WO 

2[( 1 + -r,~o)er”“o + (1 - yi~o)e-‘L’@o] 

X (b2~0 + -f3WPo - Ka2~0 + ~3) 

+ 2b2~0 - y3br/de-r1’f10), (40) 

&I, POLO) 

= q4ro x 1 - 
i 

a0 

2K1 + Ylp0k 71/Po + ( 1 - y Ipo)e-rz/wO] 

X {KWPO - ~4) - ~(WO + y4)~r/derf’~0 

- 6~0 - 74W T’/@o}/ . (41) 

This case may be avoided by either applying these for- 
mulae when lo = k-l, or by displacing p. by a very 
small increment and applying (21) and (22) as sug- 
gested by Zdunkowski et al. (1980). 

In computing fluxes for multi-layer systems over- 
lying a reflecting surface, it is also necessary to compute 
the albedo and transmission of layers for diffuse radia- 
tion. For parameterization purposes, it is usual to 
compute these quantities for an isotropic incident 
source. Under this situation, the global (spherical) al- 
bedo and global transmission can be obtained by in- 
tegrating the corresponding plane albedo and total 
transmission solutions as a function of po: 

s 

I 
Y(T,) = 2 f(Tt, Po)Po40, (42) 

0 

s 

I 
T(Tt) = 2 &I > PO)PO&O. (43) 

0 

Inspection of (21) and (22), or even the simpler (37) 
for conservative scattering, shows that a general closed 
form solution for (42) and (43) does not exist. Although 
these integrations can be carried out numerically for 
each specific two-stream model, this is not practical 
for most modeling applications. For those two-stream 
models for which p(po) does not explicitly appear in 
any of the y, coefficients, it is in principle possible to 
analytically integrate (2 1) and (22) to obtain expressions 
for Y(rJ and t(7J for specific models. To the best of 
the authors’ knowledge, this has been done only for 
$TJ in the delta-Eddington (and hence Eddington) ap- 
proximation (Wiscombe and Warren, 1980). 

Coakley and Ch$lek (1975) suggest that (42) and 
(43) may be avoided by using a second set of globally 
averaged two-stream equations in which the incident 
isotropic radiation is treated as an upper boundary 
condition. In general, however, the results obtained by 
this approach yield different results from those obtained 
using (42) and (43) for the same model. For example, 
the spherical albedo of a semi-infinite layer obtained 
in this manner for the Eddington approximation yields 
negative values when (Welch and Zdunkowski, 1982) 

1 
a0 < 4 - 3g ’ 

whereas that obtained by integrating the plane albedo 
according to (42) yields positive values of the spherical 
albedo for all values of w. when g = 0.843. 

c. Single scattering approximation 

When the optical thickness of a layer is sufficiently 
small, the reflection and transmission functions can be 
expressed in terms of the single scattering phase func- 
tion. From these expressions, coupled with the defi- 
nitions of the plane albedo and total transmission given 
in (6) and (7), it can be shown that the single scattering 
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approximation for the plane albedo and total trans- 
mission may be written as 

1 L 
i(T,, PO) = - c (- 1 )Who) 

2 I=0 

X 
s 

I [l _ e-T’(l/P+l/Po) 1 
mdcL& (44) 

0 P + PO 

k, PO) = ; 5 dvcL0) 
’ [e- n/c _ plro 1 

I=0 s 0 P - PO 

X P&.t)pdh + e-Tr’w. (45) 

In order to formally reduce these expressions, it is nec- 
essary to define the function F/(7(, U) such that 

F/(71, u) = s 1m & [ 1 - e@” - “)I&. (46) 

Making use of this definition, which can be shown to 
be equivalent to (Chandrasekhar, 1950) 

s 

T, 
F1(Tt, 4 = e’“E,(T)dT, (47) 

0 

where E/(T) is the exponential integral of order 1, it 
follows that (44) and (45) can be rewritten in the form 

1 
3717 PO) = - 

2110 i 
woF2(7r, - l/PO) 

1 - 
w4#-3(7,, - 1/Po) + - w2P2(/10) 

2 

x [3F4(7,, - l/PO) - F2(7t, - l//Jo)1 - * 

i(~~, PO) = ePt’W 
i [ 

1 + i 
&Lo 

w~F~(~~, l/po) 

. . 
1 2 (48) 

11 
x [3F4(7r, l/PO) - F2(7r, l/PO)1 + - * - 

11 
. (49) 

The extension of these expressions to expressions for 
the spherical albedo and global diffuse transmission 
may be found in King et al. (1984). 

The importance of defining the F,(T~, U) functions 
in problems involving flux transfer in single scattering, 
plane-parallel atmospheres has apparently been rec- 
ognized since King (19 13). In recent years, however, 
numerous investigators have made the premature and 
erroneous assumption that (44) and (45) can be ex- 
panded for small values of TV and the resulting expres- 
sions integrated, thereby resulting in the often-quoted 
result given in (3 1). This neglects the fact that the limits 
of integration in (44) and (45) apply for all y in the 
interval [0, 11, thereby negating the assumption that 
TJP -G 1 for some portion of the CL integration interval. 

Though (48) and (49) are practical for calculations 
of the plane albedo and total transmission only in sit- 
uations for which the scattering phase function can be 
expressed as a low order expansion in Legendre poly- 
nomials (i. e., L G 2), these expressions permit the 
examination of a number of useful cases. For example, 
if one makes use of power series expansions of the F!(T~, 
U) functions, such as those found in van de Hulst 
(1980), it is relatively straightforward to show that the 
single scattering expressions for the plane albedo and 
total transmission reduce to 

(51) 

where the error terms in the plane albedo [ti(~~, h)] 
and total transmission [ti(~~, po)] are negligible only 
when T( ln7, 4 1 and 7Jpo 4 1. 

When p. = 0, it can be shown that (44) reduces to 

?(7t, /.Lo = 0) = y ) (52) 

regardless of optical depth. In addition, the total trans- 
mission reduces to wo/2 when both coo = 0 and 7t ln7, 
< 1. Although all two-stream models listed in Table 2 
satisfy this criterion when 71 4 1, with the exception 
of Coakley-Ch$lek’s (1975) model 1 [cf. Eq. (34)], it 
turns out that this subtle restriction on the Coakley- 
Chylek (I) method is of no practical importance. This 
is a consequence of the fact that as p. - 0, multiple 
scattering is sufficiently important that (52) accurately 
approximates the plane albedo to within 5% only when 
7-l G 0.004. 

4. Results 

We have examined both the absolute and relative 
accuracies of the plane albedo, total transmission and 
fractional absorption (where applicable) as a function 
of T1 and p. for four values of the single scattering albedo 
(w. = 1 .O, 0.99,0.9 and 0.8) and for all radiative transfer 
approximations discussed in the previous section. Fig- 
ure 8 illustrates a 4 X 3 plot composite of results for 
conservative scattering and for four of these models, 
where the first row applies to asymptotic theory and 
succeeding rows to the delta-Eddington, Meador- 
Weaver and Coakley-Chjilek (I) approximations. In- 
dividual plots in the first column of Fig. 8 represent 
absolute errors in the plane albedo, defined as 

MT,, PO) = i(~,> PO) - r(~t, PO). (53) 

With this definition, positive (negative) errors indicate 
that the radiative transfer approximation overestimates 
(underestimates) the exact albedo, taken as the com- 



1000 

D 

zi 

100 

g 

: 

9 
i= 
g lb) 

01 
00 0.2 04 0.6 08 10 

PO 

ASYMPTOTIC THEORY 

L II I I 
DELTA- EDDINGTON 

COAKLEY - CH+LEK III 

0.0 0.2 0.4 0.6 0.8 1.0 

PO 

At(r.ud/t(~.ud wn=l.O 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 8. Absolute and relative accuracy of asymptotic theory, delta-Eddington, Meador-Weaver and Coakley-Chylek (I) ap 
proximations to the plane albedo and total transmission as a function of optical thickness and cosine of the solar zenith angle 
for conservative scattering (wa = 1 .O). All relative accuracy values are in percent. The FWC phase function is assumed throughout. 
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putational results presented in Fig. 2. Similar defini- 
tions apply to errors in the total transmission [At(7,, 
pO)] and fractional absorption [Aa(7,, p,J]. The relative 
errors in the plane albedo [Ar(7,, p&r(~,, PLO)] and total 
transmission [A@,, p,,)/f(~,, &] are presented in suc- 
ceeding columns of Fig. 8, and are given in percent. 
Relative errors with magnitudes greater than 20% and 
absolute errors with magnitudes greater than 0.2 are 
not plotted in Fig. 8 or in subsequent figures. 

The approximate values of the albedo, transmission 
and absorption used to generate these and subsequent 
graphical results were obtained for the same 300 values 
of 7t for which the exact computations were interpo- 
lated (cf. section 2) but at the 81 p. values used to 
perform the doubling computations. These arrays were 
then interpolated in p. to provide a 300 X 300 matrix 
of ?(T!, po), t(~~, po) and C~(T~, pLD) values, prior to com- 
puting errors. 

Individual contour plots in Fig. 8 are shaded in order 
to draw attention to those regions of greatest accuracy. 
For example, asymptotic theory is seen to be accurate 
to within 5% in both reflection and transmission for 7( 

b 3 when p. 6 0.9. Furthermore, asymptotic theory is 
accurate to within 1% for all solar zenith angles when 
TV >z 8. The Coakley-Chylek (I) approximation, on the 
other hand, is accurate to within 5% for all TV =G 0.2 
when p. t 0.1. Since r(~~, po) is small when 7t/po 6 0.5 
(cf. Fig. 2), a relative error of 5% is too stringent a 
criterion to use for accepting a model in this range. 
Adopting instead the absolute error criterion JA~(T~, 
PO)] 6 0.005, we see that the range of validity of the 
Coakley-Chylek (I) approximation can be extended to 
TV 6 0.5 for a wide range of solar zenith angles. An 
advantage of both of these models is that their absolute 
and relative accuracies show little sensitivity to p. in 
their respective ranges of validity. 

In contrast to these models, the delta-Eddington ap- 
proximation tends to have its greatest accuracy when 
p. 3 0.5, regardless of optical thickness. The large rel- 
ative albedo errors which occur when rl/po is small are 
not critical, since the absolute errors are small in this 
range. Similarly, when 71 t 10 and p. 6 0.5, the small 
values of f(~(, po) allow one to extend the range of va- 
lidity of the delta-Eddington model to values of p. 
somewhat lower than 0.5. On examination of Table 2, 
one can readily show that the PIFM method of Zdun- 
kowski et al. (1980) is identical to the delta-Eddington 
method for conservative scattering, and hence results 
for the PIFM method are not shown separately. The 
difference Zdunkowski et al. report between the delta- 
Eddington and PIFM methods when w. = 1 is likely a 
result of their using different values offin the scaling 
formulae (27)-(29) for each method. 

The Meador-Weaver approximation, which was 
developed as a composite of the Eddington and Coak- 
ley-Chjilek (I) methods, has most of the characteristics 
of the latter for conservative scattering, especially for 
thick atmospheres. In optically thin atmospheres, on 

the other hand, it has a much greater p. sensitivity 
than the Coakley-Chylek (I) method. This makes the 
Meador-Weaver approximation less suitable than al- 
ternative methods for conservative scattering over the 
entire range of variables, at least for the high values of 
asymmetry factor considered in the present investi- 
gation. 

Detailed results for conservative scattering analogous 
to Fig. 8 are presented in King and Harshvardhan 
( 1986) for four other radiative transfer approximations, 
viz., the Eddington, Coakley-Chylek (II), PIFM and 
delta-discrete ordinates methods. In addition, contour 
plots ofthe approximate albedos ?(T~, h) are presented 
for all eight models. In general, it can be concluded 
that when o. = 1 the majority of models are inaccurate 
in their approximation of the plane albedo when p. 
6 1 and 1 d 71 d 5, with asymptotic theory being the 
best suited in this difficult range of variables. 

Figure 9 illustrates a 4 X 3 plot composite showing 
absolute errors in the plane albedo, total transmission 
and fractional absorption as a function of 71 and h for 
w. = 0.9 and for each of the four models presented in 
Fig. 8. Corresponding results for relative errors are pre- 
sented in Fig. 10. In both of these figures, individual 
plots in the first column represent errors in the plane 
albedo, while plots in succeeding columns represent 
errors in the total transmission and fractional absorp- 
tion, respectively. 

Figures 9 and 10 show that asymptotic theory is 
equally as valid an approximation for optically thick, 
nonconservative atmospheres as it is for optically thick, 
conservative atmospheres (cf. Fig. 8). Relative errors 
of 5% or less are achieved in asymptotic theory for 
reflection, transmission and absorption when TV b 6, 
regardless of solar zenith angle. For cases in which re- 
flection is the most important, the results presented in 
Fig. 10 show that asymptotic theory can be applied to 
optical depths as low as 4 with an accuracy of better 
than 5%. 

As in the case of conservative scattering, the Coak- 
ley-Chylek (I) method is the most accurate approxi- 
mation for optically thin atmospheres, with a tendency 
to be somewhat more accurate for small solar zenith 
angles (large values of po). In order to have an accuracy 
of better than 5% in reflection, transmission and 
absorption, Fig. 10 suggests that it is necessary for 
Tt < 0.1 and p. t 0.1. However, since a(~[, po) @ 1 
when ~~/y~ 6 0.5 (cf. Fig. 3c), it is more meaningful 
to use the absolute error criterion IA&,, po)l 6 0.005. 
Thus we conclude that the range of validity of the 
Coakley-Chjlek (I) approximation can generally be 
extended to include all optical depths less than some 
maximum in the range 0.2 6 71 6 0.7, depending on 
solar zenith angle. 

For the delta-Eddington approximation, comparison 
of Figs. 8 and 10 shows that relative errors in the plane 
albedo and total transmission degrade somewhat in 
accuracy as absorption increases, especially for optically 
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thick atmospheres. This is a consequence of the fact 
that the !&LO) computed in the delta-Eddington ap- 
proximation is nearly linear in ~co for all single scattering 
albedos, whereas the true rm(pO) has increasing cur- 
vature as absorption increases (cf. Fig. 7). Both the 
absolute and relative errors in the other delta-scaled 
approximations (viz., the PIFM and delta-discrete or- 
dinates methods) are very similar to, but slightly worse 
than, the delta-Eddington method. A feature of all of 
these methods is the isolated region at intermediate 
values of 71 and m where absorption errors in excess 
of 10% occur. This deficiency is also present when 
w. = 0.8 (not shown). 

Although the Meador-Weaver approximation was 
previously shown to be an inferior model for conser- 
vative scattering, it is clear from Figs. 9 and 10 that its 
accuracy improves dramatically as absorption in- 
creases, especially for reflection. This is true for both 
optically thin and thick atmospheres. Moreover, it is 
the only two-stream model which has an albedo ac- 
curacy of better than 5% over a wide range of solar 
zenith angles when Tt b 2, although the absorption 
error is sometimes as large as 10% in this range of vari- 
ables. This tendency for the Meador-Weaver method 
to improve in accuracy as o. decreases continues at 
least to w. = 0.8, where albedo errors of less than 7.5% 
occur for all optical depths when p. b 0.2 (King and 
Harshvardhan, 1986). The explanation for the excep- 
tional accuracy of the Meador-Weaver approximation 
in optically thick, nonconservative atmospheres is that 
T^,(po) exhibits significant curvature in p. for all single 
scattering albedos, as does the true TV (cf. Fig. 7). 
This feature is unique to the Meador-Weaver method 
among two-stream approximations. 

Detailed results analogous to Figs. 9 and 10 are pre- 
sented in King and Harshvardhan (1986) for the Ed- 
dington, Coakley-Chylek (II), PIFM and delta-discrete 
ordinates methods. In addition, error contour plots are 
presented for the other two single scattering albedos 
not shown here (w. = 0.99 and 0.8). Contour plots of 
r^(~~, pO), f(Tl, po) and &(7(, po) are also presented for 
all eight models and for all single scattering albedos. 
In general, it can be concluded that all models with 
the exception of asymptotic theory and the Meador- 
Weaver approximation have difficulty in optically 
thick, nonconservative atmospheres. 

5. Discussion 

After examining a wide variety of radiative transfer 
approximations over a large range of optical depths, 
solar zenith angles and single scattering albedos, it has 
become evident why some approximations succeed 
while others fail in specific regimes. For example, a 
straightforward comparison of ( 16) and (37) shows that 
when w. = 1 and T~/P~ $ 1, the plane albedo obtained 
from asymptotic theory and two-stream approxima- 
tions are equivalent, provided the two-stream coeffi- 
cients y, and y3 satisfy the following criteria: 

W/JO) 
73 = 1 + YIP0 - - 

3q' . 

For the delta-scaled approximations, the only difference 
in these criteria is the substitution g - g’ in (54). Since 

9 ’ x 0.7 14 for all possible phase functions, (54) implies 
that y, x 0.7( 1 - g) for unscaled approximations and 
0.7( 1 - g’) for scaled approximations. Table 2 shows 
that the Eddington and delta-Eddington methods sat- 
isfy these requirements the most closely. In addition, 
a comparison of (55) with the results presented in Fig. 
4 indicates that in order for a two-stream method to 
perform well for optically thick, conservative atmo- 
spheres, it is necessary for y3 to be a linear function of 
p. over most of the range of solar zenith angles. The 
poor performance of the Meador-Weaver and Coak- 
ley-Chjlek methods under these conditions is at least 
in part a result of their choice of y3 = ,QO), a function 
which is highly nonlinear in p. (cf. Fig. 6). The Ed- 
dington and delta-Eddington methods, on the other 
hand, very nearly satisfy (55). Note that although y3 
can be negative for high sun in the Eddington method, 
this is in accord with the requirement given by (55). 

Although both the Eddington and delta-Eddington 
approximations are quite accurate for optically thick, 
conservative atmospheres, they differ substantially in 
their accuracy at intermediate and small optical depths 
and for nonconservative scattering. Figure 11 illustrates 
Ar(r,, pO) as a function of 7, and p. for the Eddington 
approximation, where the left portion of the figure ap- 
plies to w. = 1 and the right portion to w. = 0.9. Com- 
paring these results to comparable results in Figs. 8 
and 9 for the delta-Eddington approximation shows 
that the Eddington and delta-Eddington methods are 
virtually identical for w. = 1 and Tt b 15. Furthermore, 
these results indicate that delta-scaling not only im- 
proves the accuracy of radiative transfer approxima- 
tions for small optical depths, as intended, but it also 
improves the accuracy for optically thick atmospheres 
whenoO< 1. 

For optically thin atmospheres one expects single 
scattering to be the most accurate approximation. In 
order to assess how thin a layer is necessary for single 
scattering to be an acceptable approximation, we com- 
puted the ratio of the plane albedo to the plane albedo 
obtained assuming first-order (single) scattering. This 
ratio, given by 

‘.(Tt, PO) 
x(71, PO) = n > 

is illustrated in Fig. 12 as a function of Tf and po, where 
again the left portion of the figure applies to w. = 1 
and the right portion to w. = 0.9. It is evident from 
Fig. 12 that the enhancement of the first-order plane 
albedo by multiple scattering is 30% or greater at 7* 

= 0.1, regardless of single scattering albedo. As the op- 
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RG. 11. Absolute accuracy of the Eddington approximation to the plane albedo as a function 
of optical thickness and cosine of the solar zenith angle. The figure on the left applies to 
conservative scattering (w,, = 1 .O) and the figure on the right to nonconservative scattering 
(a@ = 0.9). 

tical thickness increases, the multiple scattering en- 
hancement factor x(7!, m) continues to increase, being 
everywhere larger for conservative scattering than for 
nonconservative scattering. This is especially evident 
for optically thick atmospheres, where multiple scat- 
tering enhances the plane albedo by a factor of about 
50 (8.4) for w. = 1 (0.9). These results clearly show 
that single scattering is an inaccurate approximation 
for all optical depths 7t B 0.1. Some two-stream ap- 
proximations that tend to the single scattering limit for 
rt 4 0.1 perform much better than the single scattering 
approximation when TV N 0.1. For example, Figs. 8 
and 10 show that two-stream approximations seldom 
have albedo errors as large as 30% when T( x 0.1, It is 
therefore always preferable to use appropriate two- 
stream approximations or asymptotic theory, rather 
than single scattering, when computing fluxes in at- 
mospheric layers of optical thickness 7t 3 0.1. 

6. Summary and conclusions 

In the present study the plane albedo, total trans- 
mission and fractional absorption predicted by various 
radiative transfer approximations have been compared 
with doubling computations as a function of optical 
thickness, solar zenith angle and single scattering al- 
bedo. In order to gain insight into the strengths and 
weaknesses of various two-stream approximations, we 
studied the limiting behavior of these methods for both 
optically thick and optically thin atmospheres. This 
was done by comparing their accuracies with asymp- 
totic theory for thick atmospheres and the single scat- 
tering approximation for thin atmospheres. 

The results presented in Section 4 have shown that 
specific regions can be identified where one approxi- 
mation is more accurate than another. For remote 
sensing applications involving flux measurements of 

FIG. 12. As is Fig. 11 except for the ratio of the plane albedo to the 
plane albedo obtained assuming first-order (single) scattering. 
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either reflected or transmitted radiation, it is generally 
possible to use these results as a guide in selecting the 
most accurate approximation to use. For example, the 
most accurate radiative transfer approximation to use 
in analyzing diffuse-direct ratio measurements would 
be the Coakley-Chylek (I) method, since this method 
for inferring the single scattering albedo of tropospheric 
aerosol particles requires modeling the transmission as 
a function of solar zenith angle (King and Herman, 
1979). In addition, the Coakley-Chylek (I) approxi- 
mation is the most appropriate method to use in cli- 
mate investigations involving the reflection and trans- 
mission properties of nonabsorbing stratospheric aero- 
sol layers. For optically thick clouds, on the other hand, 
asymptotic theory is the most appropriate choice for 
both conservative and nonconservative atmospheres. 
The Meador-Weaver approximation is the best suited 
model for investigations involving moderate and strong 
absorption, such as energy budget studies within water 
vapor bands or strongly absorbing planetary atmo- 
spheres. Arctic haze investigations are the most difficult 
applications to model accurately using approximate 
radiative transfer methods, since the combined con- 
ditions of low sun, moderate absorption and small op- 
tical depths are difficult to meet with any approxima- 
tion. 

For climate model applications in which a single 
radiative transfer approximation is required to accu- 
rately model reflection, transmission and absorption 
at all optical depths, solar zenith angles and single scat- 
tering albedos, it is clear from the results presented in 
Section 4 that this criterion is not satisfied by any of 
the approximate methods. In general circulation mod- 
els in which it is the most important to have accurate 
computations in moderately thick cloud layers and over 
a wide range of solar zenith angles, our results show 
that the delta-Eddington method is better suited than 
alternative two-stream methods. It must be realized, 
however, that the treatment of absorption in strong 
water vapor bands and in optically thin cirrus clouds 
will be somewhat inaccurate in this method. 

Most previous intercomparisons of radiative transfer 
approximations have concentrated on presenting re- 
sults for the plane albedo as a function of cosine of the 
solar zenith angle for selected values of the optical 
depth. On some occasions, intercomparisons have been 
further restricted to selected values of po. Although the 
delta-Eddington approximation is accurate for reflec- 
tion to within 5% for all optical depths when w. = 0.9 
and cl0 = 0.4 (cf. Fig. lo), a generalized conclusion on 
its overall accuracy based on this restricted intercom- 
parison would be highly misleading. We therefore feel 
it is important to examine the accuracy of the plane 
albedo, total transmission and fractional absorption as 
a function of optical depth and solar zenith angle before 
drawing conclusions about the overall accuracy of a 
given approximation, 

Due to the importance of developing a multiple 
scattering approximation which is accurate for all solar 

zenith angles and over a wide range of optical depths, 
our results suggest that a hybrid two-stream model that 
reduces to asymptotic theory for thick atmospheres but 
extends the range of validity of asymptotic theory to 
thinner atmospheres would be extremely valuable. The 
development of such a model remains a challenge for 
further study. Finally, we would like to note that none 
of the conclusions drawn in the present investigation 
is affected by our choice of a Mie theory phase func- 
tion. Limited intercomparisons with doubling com- 
putations using the Henyey-Greenstein phase function 
with the same asymmetry factor as in the 
fair weather cumulus model (g = 0.843) yield error 
plots with virtually the same appearance as those in 
Figs, 8- 10. 
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